Chimeric antigen receptor (CAR)-T and NK cell immunotherapies have transformed cancer treatment, and recent studies suggest that the quality of the CAR-T/NK cell immunological synapse (IS) may serve as a functional biomarker for predicting therapeutic efficacy. Accurate detection and segmentation of CAR-T/NK IS structures using artificial neural networks (ANNs) can greatly increase the speed and reliability of IS quantification. However, a persistent challenge is the limited size of annotated microscopy datasets, which restricts the ability of ANNs to generalize. To address this challenge, we integrate two complementary data-augmentation frameworks. First, we employ Instance Aware Automatic Augmentation (IAAA), an automated, instance-preserving augmentation method that generates synthetic CAR-T/NK IS images and corresponding segmentation masks by applying optimized augmentation policies to original IS data. IAAA supports multiple imaging modalities (e.g., fluorescence and brightfield) and can be applied directly to CAR-T/NK IS images derived from patient samples. In parallel, we introduce a Semantic-Aware AI Augmentation (SAAA) pipeline that combines a diffusion-based mask generator with a Pix2Pix conditional image synthesizer. This second method enables the creation of diverse, anatomically realistic segmentation masks and produces high-fidelity CAR-T/NK IS images aligned with those masks, further expanding the training corpus beyond what IAAA alone can provide. Together, these augmentation strategies generate synthetic images whose visual and structural properties closely match real IS data, significantly improving CAR-T/NK IS detection and segmentation performance. By enhancing the robustness and accuracy of IS quantification, this work supports the development of more reliable imaging-based biomarkers for predicting patient response to CAR-T/NK immunotherapy.
Individual tree crown segmentation is an important task in remote sensing for forest biomass estimation and ecological monitoring. However, accurate delineation in dense, overlapping canopies remains a bottleneck. While supervised deep learning methods suffer from high annotation costs and limited generalization, emerging foundation models (e.g., Segment Anything Model) often lack domain knowledge, leading to under-segmentation in dense clusters. To bridge this gap, we propose ZS-TreeSeg, a Zero-Shot framework that adapts from two mature tasks: 1) Canopy Semantic segmentation; and 2) Cells instance segmentation. By modeling tree crowns as star-convex objects within a topological flow field using Cellpose-SAM, the ZS-TreeSeg framework forces the mathematical separation of touching tree crown instances based on vector convergence. Experiments on the NEON and BAMFOREST datasets and visual inspection demonstrate that our framework generalizes robustly across diverse sensor types and canopy densities, which can offer a training-free solution for tree crown instance segmentation and labels generation.
Segmentation of microscopy images constitutes an ill-posed inverse problem due to measurement noise, weak object boundaries, and limited labeled data. Although deep neural networks provide flexible nonparametric estimators, unconstrained empirical risk minimization often leads to unstable solutions and poor generalization. In this work, image segmentation is formulated as a PDE-constrained optimization problem that integrates physically motivated priors into deep learning models through variational regularization. The proposed framework minimizes a composite objective function consisting of a data fidelity term and penalty terms derived from reaction-diffusion equations and phase-field interface energies, all implemented as differentiable residual losses. Experiments are conducted on the LIVECell dataset, a high-quality, manually annotated collection of phase-contrast microscopy images. Training is performed on two cell types, while evaluation is carried out on a distinct, unseen cell type to assess generalization. A UNet architecture is used as the unconstrained baseline model. Experimental results demonstrate consistent improvements in segmentation accuracy and boundary fidelity compared to unconstrained deep learning baselines. Moreover, the PDE-regularized models exhibit enhanced stability and improved generalization in low-sample regimes, highlighting the advantages of incorporating structured priors. The proposed approach illustrates how PDE-constrained optimization can strengthen data-driven learning frameworks, providing a principled bridge between variational methods, statistical learning, and scientific machine learning.
Sorghum is a globally important cereal grown widely in water-limited and stress-prone regions. Its strong drought tolerance makes it a priority crop for climate-resilient agriculture. Improving water-use efficiency in sorghum requires precise characterisation of stomatal traits, as stomata control of gas exchange, transpiration and photosynthesis have a major influence on crop performance. Automated analysis of sorghum stomata is difficult because the stomata are small (often less than 40 $μ$m in length in grasses such as sorghum) and vary in shape across genotypes and leaf surfaces. Automated segmentation contributes to high-throughput stomatal phenotyping, yet current methods still face challenges related to nested small structures and annotation bottlenecks. In this paper, we propose a semi-supervised instance segmentation framework tailored for analysis of sorghum stomatal components. We collect and annotate a sorghum leaf imagery dataset containing 11,060 human-annotated patches, covering the three stomatal components (pore, guard cell and complex area) across multiple genotypes and leaf surfaces. To improve the detection of tiny structures, we split high-resolution microscopy images into overlapping small patches. We then apply a pseudo-labelling strategy to unannotated images, producing an additional 56,428 pseudo-labelled patches. Benchmarking across semantic and instance segmentation models shows substantial performance gains: for semantic models the top mIoU increases from 65.93% to 70.35%, whereas for instance models the top AP rises from 28.30% to 46.10%. These results demonstrate that combining patch-based preprocessing with semi-supervised learning significantly improves the segmentation of fine stomatal structures. The proposed framework supports scalable extraction of stomatal traits and facilitates broader adoption of AI-driven phenotyping in crop science.
Urban bus transit agencies need reliable, network-wide delay predictions to provide accurate arrival information to passengers and support real-time operational control. Accurate predictions help passengers plan their trips, reduce waiting time, and allow operations staff to adjust headways, dispatch extra vehicles, and manage disruptions. Although real-time feeds such as GTFS-Realtime (GTFS-RT) are now widely available, most existing delay prediction systems handle only a few routes, depend on hand-crafted features, and offer little guidance on how to design a scalable, reusable architecture. We present a city-scale prediction pipeline that combines multi-resolution feature engineering, dimensionality reduction, and deep learning. The framework generates 1,683 spatiotemporal features by exploring 23 aggregation combinations over H3 cells, routes, segments, and temporal patterns, and compresses them into 83 components using Adaptive PCA while preserving 95% of the variance. To avoid the "giant cluster" problem that occurs when dense urban areas fall into a single H3 region, we introduce a hybrid H3+topology clustering method that yields 12 balanced route clusters (coefficient of variation 0.608) and enables efficient distributed training. We compare five model architectures on six months of bus operations from the Société de transport de Montréal (STM) network in Montréal. A global LSTM with cluster-aware features achieves the best trade-off between accuracy and efficiency, outperforming transformer models by 18 to 52% while using 275 times fewer parameters. We also report multi-level evaluation at the elementary segment, segment, and trip level with walk-forward validation and latency analysis, showing that the proposed pipeline is suitable for real-time, city-scale deployment and can be reused for other networks with limited adaptation.
Self-supervised learning (SSL) has emerged as a powerful strategy for representation learning under limited annotation regimes, yet its effectiveness remains highly sensitive to many factors, especially the nature of the target task. In segmentation, existing pipelines are typically tuned to large, homogeneous regions, but their performance drops when objects are small, sparse, or locally irregular. In this work, we propose a scale-aware SSL adaptation that integrates small-window cropping into the augmentation pipeline, zooming in on fine-scale structures during pretraining. We evaluate this approach across two domains with markedly different data modalities: seismic imaging, where the goal is to segment sparse faults, and neuroimaging, where the task is to delineate small cellular structures. In both settings, our method yields consistent improvements over standard and state-of-the-art baselines under label constraints, improving accuracy by up to 13% for fault segmentation and 5% for cell delineation. In contrast, large-scale features such as seismic facies or tissue regions see little benefit, underscoring that the value of SSL depends critically on the scale of the target objects. Our findings highlight the need to align SSL design with object size and sparsity, offering a general principle for buil ding more effective representation learning pipelines across scientific imaging domains.
Understanding sickle cell dynamics requires accurate identification of morphological transitions under diverse biophysical conditions, particularly in densely packed and overlapping cell populations. Here, we present an automated deep learning framework that integrates AI-assisted annotation, segmentation, classification, and instance counting to quantify red blood cell (RBC) populations across varying density regimes in time-lapse microscopy data. Experimental images were annotated using the Roboflow platform to generate labeled dataset for training an nnU-Net segmentation model. The trained network enables prediction of the temporal evolution of the sickle cell fraction, while a watershed algorithm resolves overlapping cells to enhance quantification accuracy. Despite requiring only a limited amount of labeled data for training, the framework achieves high segmentation performance, effectively addressing challenges associated with scarce manual annotations and cell overlap. By quantitatively tracking dynamic changes in RBC morphology, this approach can more than double the experimental throughput via densely packed cell suspensions, capture drug-dependent sickling behavior, and reveal distinct mechanobiological signatures of cellular morphological evolution. Overall, this AI-driven framework establishes a scalable and reproducible computational platform for investigating cellular biomechanics and assessing therapeutic efficacy in microphysiological systems.
Mechanical properties of red blood cells (RBCs) are promising biomarkers for hematologic and systemic disease, motivating microfluidic assays that probe deformability at throughputs of $10^3$--$10^6$ cells per experiment. However, existing pipelines rely on supervised segmentation or hand-crafted kymographs and rarely encode the laminar Stokes-flow physics that governs RBC shape evolution. We introduce FlowMorph, a physics-consistent self-supervised framework that learns a label-free scalar mechanics proxy $k$ for each tracked RBC from short brightfield microfluidic videos. FlowMorph models each cell by a low-dimensional parametric contour, advances boundary points through a differentiable ''capsule-in-flow'' combining laminar advection and curvature-regularized elastic relaxation, and optimizes a loss coupling silhouette overlap, intra-cellular flow agreement, area conservation, wall constraints, and temporal smoothness, using only automatically derived silhouettes and optical flow. Across four public RBC microfluidic datasets, FlowMorph achieves a mean silhouette IoU of $0.905$ on physics-rich videos with provided velocity fields and markedly improves area conservation and wall violations over purely data-driven baselines. On $\sim 1.5\times 10^5$ centered sequences, the scalar $k$ alone separates tank-treading from flipping dynamics with an AUC of $0.863$. Using only $200$ real-time deformability cytometry (RT-DC) events for calibration, a monotone map $E=g(k)$ predicts apparent Young's modulus with a mean absolute error of $0.118$\,MPa on $600$ held-out cells and degrades gracefully under shifts in channel geometry, optics, and frame rate.
Nuclei panoptic segmentation supports cancer diagnostics by integrating both semantic and instance segmentation of different cell types to analyze overall tissue structure and individual nuclei in histopathology images. Major challenges include detecting small objects, handling ambiguous boundaries, and addressing class imbalance. To address these issues, we propose PanopMamba, a novel hybrid encoder-decoder architecture that integrates Mamba and Transformer with additional feature-enhanced fusion via state space modeling. We design a multiscale Mamba backbone and a State Space Model (SSM)-based fusion network to enable efficient long-range perception in pyramid features, thereby extending the pure encoder-decoder framework while facilitating information sharing across multiscale features of nuclei. The proposed SSM-based feature-enhanced fusion integrates pyramid feature networks and dynamic feature enhancement across different spatial scales, enhancing the feature representation of densely overlapping nuclei in both semantic and spatial dimensions. To the best of our knowledge, this is the first Mamba-based approach for panoptic segmentation. Additionally, we introduce alternative evaluation metrics, including image-level Panoptic Quality ($i$PQ), boundary-weighted PQ ($w$PQ), and frequency-weighted PQ ($fw$PQ), which are specifically designed to address the unique challenges of nuclei segmentation and thereby mitigate the potential bias inherent in vanilla PQ. Experimental evaluations on two multiclass nuclei segmentation benchmark datasets, MoNuSAC2020 and NuInsSeg, demonstrate the superiority of PanopMamba for nuclei panoptic segmentation over state-of-the-art methods. Consequently, the robustness of PanopMamba is validated across various metrics, while the distinctiveness of PQ variants is also demonstrated. Code is available at https://github.com/mkang315/PanopMamba.
Four-dimensional scanning transmission electron microscopy (4D-STEM) enables mapping of diffraction information with nanometer-scale spatial resolution, offering detailed insight into local structure, orientation, and strain. However, as data dimensionality and sampling density increase, particularly for in situ scanning diffraction experiments (5D-STEM), robust segmentation of spatially coherent regions becomes essential for efficient and physically meaningful analysis. Here, we introduce a clustering framework that identifies crystallographically distinct domains from 4D-STEM datasets. By using local diffraction-pattern similarity as a metric, the method extracts closed contours delineating regions of coherent structural behavior. This approach produces cluster-averaged diffraction patterns that improve signal-to-noise and reduce data volume by orders of magnitude, enabling rapid and accurate orientation, phase, and strain mapping. We demonstrate the applicability of this approach to in situ liquid-cell 4D-STEM data of gold nanoparticle growth. Our method provides a scalable and generalizable route for spatially coherent segmentation, data compression, and quantitative structure-strain mapping across diverse 4D-STEM modalities. The full analysis code and example workflows are publicly available to support reproducibility and reuse.